The stability of modified Runge-Kutta methods for the pantograph equation
نویسندگان
چکیده
In the present paper, the modified Runge-Kutta method is constructed, and it is proved that the modified Runge-Kutta method preserves the order of accuracy of the original one. The necessary and sufficient conditions under which the modified Runge-Kutta methods with the variable mesh are asymptotically stable are given. As a result, the θ-methods with 1 2 ≤ θ ≤ 1, the odd stage Gauss-Legendre methods and the even stage Lobatto IIIA and IIIB methods are asymptotically stable. Some experiments are given.
منابع مشابه
Asymptotic Stability of Runge-kutta Methods for the Pantograph Equations
This paper considers the asymptotic stability analysis of both exact and numerical solutions of the following neutral delay differential equation with pantograph delay. ⎧⎨ ⎩ x′(t) +Bx(t) + Cx′(qt) +Dx(qt) = 0, t > 0, x(0) = x0, where B,C,D ∈ Cd×d, q ∈ (0, 1), and B is regular. After transforming the above equation to non-automatic neutral equation with constant delay, we determine sufficient co...
متن کاملDiscretized Stability and Error Growth of The Nonautonomous Pantograph Equation
This paper is concerned with the stability properties of Runge–Kutta methods for the pantograph equation, a functional differential equation with a proportional delay. The focus is on nonautonomous equations. Both linear and nonlinear cases are considered. Sufficient and necessary conditions for the asymptotic stability of the numerical solution of general neutral pantograph equations are given...
متن کاملGPU Implementation of Implicit Runge-Kutta Methods
Runge-Kutta methods are an important family of implicit and explicit iterative methods used for the approximation of solutions of ordinary differential equations. Explicit RungeKutta methods are unsuitable for the solution of stiff equations as their region of stability is small. Stiff equation is a differential equation for which certain numerical methods for solving the equation are numerical...
متن کاملAn Optimized Runge-Kutta Method for the Numerical Solution of the Radial Schrödinger Equation
An optimized explicit modified Runge-Kutta RK method for the numerical integration of the radial Schrödinger equation is presented in this paper. This method has frequency-depending coefficients with vanishing dispersion, dissipation, and the first derivative of dispersion. Stability and phase analysis of the new method are examined. The numerical results in the integration of the radial Schröd...
متن کاملApproximate Solution of the Second Order Initial Value Problem by Using Epsilon Modified Block-Pulse Function
The present work approaches the problem of achieving the approximate solution of the second order initial value problems (IVPs) via its conversion into a Volterra integral equation of the second kind (VIE2). Therefore, we initially solve the IVPs using Runge–Kutta of the forth–order method (RK), and then convert it into VIE2, and apply the εmodified block–pulse functions (εMBPFs) and their oper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006